Package: hdme 0.6.0

Oystein Sorensen

hdme: High-Dimensional Regression with Measurement Error

Penalized regression for generalized linear models for measurement error problems (aka. errors-in-variables). The package contains a version of the lasso (L1-penalization) which corrects for measurement error (Sorensen et al. (2015) <doi:10.5705/ss.2013.180>). It also contains an implementation of the Generalized Matrix Uncertainty Selector, which is a version the (Generalized) Dantzig Selector for the case of measurement error (Sorensen et al. (2018) <doi:10.1080/10618600.2018.1425626>).

Authors:Oystein Sorensen [aut, cre]

hdme_0.6.0.tar.gz
hdme_0.6.0.zip(r-4.5)hdme_0.6.0.zip(r-4.4)hdme_0.6.0.zip(r-4.3)
hdme_0.6.0.tgz(r-4.4-x86_64)hdme_0.6.0.tgz(r-4.4-arm64)hdme_0.6.0.tgz(r-4.3-x86_64)hdme_0.6.0.tgz(r-4.3-arm64)
hdme_0.6.0.tar.gz(r-4.5-noble)hdme_0.6.0.tar.gz(r-4.4-noble)
hdme_0.6.0.tgz(r-4.4-emscripten)hdme_0.6.0.tgz(r-4.3-emscripten)
hdme.pdf |hdme.html
hdme/json (API)
NEWS

# Install 'hdme' in R:
install.packages('hdme', repos = c('https://osorensen.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/osorensen/hdme/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

5.06 score 8 stars 29 scripts 276 downloads 7 exports 41 dependencies

Last updated 1 years agofrom:610d1c9c14. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-win-x86_64OKNov 04 2024
R-4.5-linux-x86_64OKNov 04 2024
R-4.4-win-x86_64OKNov 04 2024
R-4.4-mac-x86_64OKNov 04 2024
R-4.4-mac-aarch64OKNov 04 2024
R-4.3-win-x86_64OKNov 04 2024
R-4.3-mac-x86_64OKNov 04 2024
R-4.3-mac-aarch64OKNov 04 2024

Exports:corrected_lassocv_corrected_lassocv_gdsgdsgmu_lassogmusmus

Dependencies:clicodetoolscolorspacefansifarverforeachggplot2glmnetgluegtableisobanditeratorslabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6rbibutilsRColorBrewerRcppRcppArmadilloRcppEigenRdpackRglpkrlangscalesshapeslamsurvivaltibbleutf8vctrsviridisLitewithr

The hdme package: regression methods for high-dimensional data with measurement error

Rendered fromhdme.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2023-05-16
Started: 2019-04-12